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ABSTRACT 

This mathematical model has been presented to study the effect of a stenosis shape on arterial blood flow 

characteristics with the representation of blood by Bingham plastic fluid model. The governing equations of proposed 

model are solved and closed form expressions for the blood flow characteristics, namely dimensionless resistance to flow, 

flow rate and wall shear stress are derived. It has been found that the wall shear stress and resistance to flow increase with 

increasing tube radius for constant value of the stenosis height, while decreases as stenosis shape parameter increases.  
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INTRODUCTION 

Atherosclerosis (ath-er-o-skler-O-sis) is a disease in which plaque (plak) builds up inside arteries. Arteries are 

blood vessels that carry oxygen-rich blood to heart and other parts of the body. Plaque is made up of fat, cholesterol, 

calcium, and other substances found in the blood. Over time, plaque hardens and narrows arteries. This limits the flow of 

oxygen-rich blood to organs and other parts of body. Atherosclerosis can lead to serious problems, including heart attack, 

stroke, or even death. The study of blood flow through mammalian circulatory system has been the subject of scientific 

research for about a couple of centuries. Like most of the problems of blood flow, it is complex one due to the complicated 

structure of blood, the circulatory system and their constituent materials. The experimental studies and the theoretical 

treatments of blood flow phenomena are very useful for the diagnosis of a number of cardiovascular diseases and 

development of pathological patterns in human or animal physiology and for other clinical purposes and practical 

applications. It has been reported that the fluid dynamical properties of blood flow through non-uniform cross section of 

the arteries play a major role in the fundamental understanding and treatment of many cardiovascular diseases. Several 

researchers have studied the blood flow characteristics due to the presence of a stenosis in the tapered arteries. Blood 

behaves like a Newtonian fluid when it flows through larger arteries at high shear rates, whereas it behaves like a non-

Newtonian fluid when it flows through narrow arteries at low shear rates. In the region of narrowing arterial constriction, 

the flow accelerates and consequently the velocity gradient near the wall region is steeper due to the increased core 

velocity resulting in relatively large shear stress on the wall even for a mild stenosis. The possibility that the 

haemodynamic factors play an important role in the genesis and proliferation of stenosis has attracted the interest of 

researchers to study blood flow through local constrictions Young (1968); Young and Tsai (1973); Deshpande et al. 

(1976), Caro et al. (1978); Ahmed and Giddens (1983); Ku (1997) and others during the past few decades. An account of 

the most of the theoretical and experimental studies, reported so far, may be had from Young (1979), Srivastava (1996, 

2002), Sarkar and Jayaraman (1998), Mishra and Verma (2007), Mekheimer and Kot (2008), Srivastava and Rastogi (2009, 

2010), etc. The analysis of blood flow through a symmetrically stenosed artery has been studied by Singh et al. (2009). 

Sanyal and Maji (1999) investigated the unsteady blood flow through an indented tube in presence of stenosis. Chakravarty 

and Datta (1990) performed rheological study on the effect of mild stenoses on the flow behavior of blood in a stenosed 
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arterial segment. The various geometries of stenosis have been suggested by the researchers.  

 

Figure 1: (A) Shows a Normal Artery with Normal Blood Flow 
 Figure (B) Shows an Artery with Plaque Buildup 

 

 

Figure 2: Stenotic Artery 

The cosine-shaped geometry was considered and analyzed with different parameters by many researchers like 

Young (1968), Kapur (1985), Chakravarty (1987). The power-law and Casson fluid models with cosine-shaped geometry 

were discussed by Shukla et al. (1980). A composite shaped geometry of arterial stenosis was suggested and investigated 

by Mekheimer (2008). The bell-shaped geometry with different fluids was discussed by Misra and Shit (2006). In all of the 

above studies the shape of stenosis was considered to be symmetrical about the axis as well as radius of the flow cylinder.  

The radially nonsymmetric stenosis has been analyzed by Sanyal and Maji (1999), Srivastava and Saxena (1999), 

Srivastava (1996). The effects of shape of stenosis on the resistance to blood flow through an artery has been investigated 

by Haldar (1985). Due to the presence of a new parameter the formulation of our model is mathematically more general 

and includes the model of Haldar (1985) as a special case. 

In the present mathematical model, we have studied a problem in which blood flow has been considered axially 

non-symmetric but radially symmetric with mild stenosed artery by introducing blood as Bingham plastic fluid model. The 

effects of stenosis shape parameter on resistance to flow, apparent viscosity, stenosis size, yield stress, and stenosis length, 

have investigated. The schematic diagram of the flow is given by Figure.1 and Figure.2. 

Formulation of the Mathematical Model 

We have considered an artery having mild stenosis. The flow of blood is assumed to be steady, laminar and fully-

developed. Blood is taken as a Bingham plastic fluid. It is assumed that stenosis is symmetrical about the axis but non- 

symmetrical with respect to radial co-ordinates. The mathematical expression for geometry can be written as, 
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where 

R0  : Radius of normal tube 

R(z)  : Radius of stenotic region 

L   : The length of the artery 

L0   : The length of the stenosis 

d   : Distance between equispaced points 

δ   : Maximum height of stenosis (δ << R0) 

m   : Parameter determining the shape of stenosis (m ≥ 2) 

Conservation Equation and Boundary Conditions 

The equation of motion for laminar and incompressible, steady, fully-developed, one-dimensional flow of blood 

whose viscosity varies along radial direction in an artery reduces to: 

P 1 (rτ)
0 ,

r r z

P
0 ,

r

∂ ∂ = − + ∂ ∂ 


∂ = −
∂ 

                                                                                                                                          (2) 

where (z, r) are co-ordinates with z measured along the axis and r measured normal to the axis of the artery.  

The boundary conditions are introduced to solve the above equations, 

L0

u/ r = 0         at r = 0, u = 0               at r = R(z)

   is finite       at r = 0        

P = P              at z = 0, P = P              at z = L
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                                                                                (3)  

Bingham Plastic Fluid Model 

For Bingham plastic fluid, the stress-strain relation is given by 
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u  : axial velocity 

µ  : viscosity of fluid  

(-dp/dz) : pressure gradient  

Solution of the Problem 

The expression for the velocity, u obtained as the solution of equation (2) subject to the boundary conditions (3) 

and equation (4), is obtained as (for RP ≤ r ≤ R(z))  

2 2 3/2 3/21/22 3/2
0 0 0 0 0
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R τ R 4R τdp R r R r 1 dp R r
u=- - + - - - -
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The constant plug flow velocity, uP may be obtained from equation (5) evaluated at r = RP. 

The volumetric flow rate Q can be defined as, 
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The flow flux, Q when Rp<< R (i.e., the radius of the plug flow region is very small as compared to the non-plug 

flow region), is calculated as 
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From above equation pressure gradient is written as follows, 
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Integrating equation (9) using the condition (3) P = P0 at z = 0 and P = PL at z = L. We have 

( )
L

4 4L 0 0 00

8µQ dz
∆P P P

πR R (z)/R f(y(z))
= − = ∫                                                                                        (10) 

The resistance to flow is denoted by λ and defined as follows, 

L 0
P - P

λ =
Q                                                                                                                                                        

 (11)  

The resistance to flow from equation (11) using equations (10) is written as, 
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where f0 is given by ( ) ( ) ( )
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Following the apparent viscosity (µapp) is defined as follows; 
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The shearing stress at the wall can be defined as; 
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RESULTS AND DISCUSSIONS 

In order to have estimate of the quantitative effects of various parameters involved in the analysis computer codes 

were developed and to evaluate the analytical results obtained for resistance to blood flow, apparent viscosity and wall 

shear stress for normal and diseased system associated with stenosis due to the local deposition of lipids have been 

determine. The results are shown in Figure 3-7 by using the values of parameter based on experimental data in artery. 

 

Figure 3: Variatuin of Resistance to Flow with m 

 

Figure 4: Variation of Resistance to Flow with Stenosis Length 



102                         Sapna Ratan Shah 

 

Figure 5: Variation of Wall Shear Stress with Stenosis Size for different Values of m 

Figure 3 reveals the variation of resistance to flow (λ) with stenosis shape parameter (m) for different values of 

stenosis size (δ/R0). It is observed that the resistance to flow (λ) decreases as stenosis shape parameter (m) increases and 

maximum resistance to flow (λ) occurs at (m = 2), i. e. in case of symmetric stenosis. It has also been seen from this graph 

that resistance to flow (λ) increases as stenosis size (δ/R0) increases. 

These results are therefore consisting to the result of Mishra and Verma (2007). In Figure 4 the variation of 

resistance to flow (λ) with stenosis length (L0/L) for different values of stenosis size (δ/R0) has been shown. This figure 

depicts that the resistance to flow (λ) increases as stenosis size (δ/R0) and stenosis length (L0/L) increases. 

These results are similar to the results of Srivastava (1999). Figure 5 shows the variation of wall shear stress (τ) 

with stenosis size for different values of stenosis shape parameter (m). It may be observed from the figure that the wall 

shear stress (τ) increases as stenosis size increases while decreases as stenosis shape parameter (m) increases. 

These results are consistent to the observation of Chakravarty (1987). Figure 6 shows the variation of wall shear 

stress (τ) with stenosis size for different values of stenosis length (L0/L). It is clear from the figure that the wall shear stress 

(τ) increases as stenosis size and stenosis length increases. These results are consistent to the observation of Haldar (1985). 

The variation of apparent viscosity with stenosis length (L0/L) for different values of stenosis size (δ/R0) has been depicted 

in Figure 7. This figure shows that the of apparent viscosity increases as stenosis size (δ/R0) increases. This result is similar 

to the results of Sanyal and Maji (1999). 

 

Figure 6: Variation of Wall Shear Stress with Stenosis Size for Different Values of Stenosis Length 
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Figure 7: Variation of Apparent Viscosity with Stenosis Length 

Concluding Remarks 

In his paper, we have studied the effect of stenosis shape parameter on resistance to blood flow, wall shear stress 

and apparent viscosity in an artery by introducing blood as Bingham plastic fluid model. It has been concluded that the 

resistance to blood flow, wall shear stress and apparent viscosity increases as stenosis size and stenosis length increases 

while decreases as stenosis shape parameter increases. So it has shown that the results were greatly influenced by the 

change of stenosis shape parameter. In an artery flow, the viscosity of blood found to vary with the arterial radius 

decreasing with it. This model helps for the people working in the field of physiological fluid dynamics as well as to the 

medical practitioners.  
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